A DFT Analysis of the Participation of Zwitterionic TACs in
Polar[3+2]Cycloaddition Reactions.
Tetrahedron (2014) DOI: 10.1016/j.tet.2014.05.003
Unlike Diels-Alder reactions, which can be classified as non-polar Diels-Alder reactions with high activation energies, and polar Diels-Alder reactions with low activation energies [1],[3+2]cycloaddition (32CA) reactions lack a clear systematisation of their reactivity based on the nucleophilic/electrophilic behaviour of the reagents.
Based on the distortion/interaction energy model, Houk checked the 32CA reactions of nine different non-substituted tri-atom-components (TACs) with ethylene and acetylene, finding that the computed B3LYP/6-31G(d) activation enthalpies correlated very nicely with the distortion energies [2]. He concluded that the distortion energy of the TAC and ethylene or acetylene towards the TS is the major factor controlling the reactivity differences of TACs [2]. However, the distortion energy not has any chemical meaning because it depends on the TS geometry, thus does not providing any information about the structure/reactivity relationship of TACs
Very recently, we performed a structure/reactivity relationship study about the 32CA reactions of twelvenon-substitutedTACswith ethylene and acetylene, finding that the high reactivity of some TACs is due to itspseudodiradicalcharacter [3]. This study allowed establishing a useful classification of 32CA reactions intopseudodiradical-type (pr-type)reactions involving TACs with a highpseudodiradicalcharacter, which take place easily through an earlier TS with non-polar character, andzwitterionic-type(zw-type) reactions involving TACs with a high zwitterionic character, characterised by favourable nucleophilic/electrophilic interactions, taking place through polar TSs [3]. Considering that the simplest TACs of this series having a zwitterionic character presented low reactivity in non-polar processes towards ethyleneand acetylene, would be expected that the nucleophilic activation of these TACs and the electrophilic activation of ethylene, or vice versa, will favour the process towards a polar zw-typereaction.
In the present manuscript, a set of seven non-substituted TACs,showing a zwitterionic structureand low reactivity towards ethylene, has been studied using and nucleophilicity N reactivity indiceswthe electrophilicity defined within the conceptual DFT at the B3LYP/6-31G(d) level of theory. The general characteristic of these TACs is their high nucleophilic and a low electrophilic behaviour. Activation energies of the corresponding 32CA reaction computed at theMPWB1K/6-311G(d) level in dichloromethane point to that non-substituted TACsreact quickly toward dicyanoethylene showing their ability to react towards electron-deficient ethylenes. However, when the TACs are electrophilically activated by an appropriate substitution thereseems to be insufficient activation to react toward electron-rich ethylenes. The electrophilic activation of the TAC moiety for nucleophilic attacks was only determined by the coordination with a Lewis acid. All 32CA reactions studied in this work presented high regioselectivity. The polar character of these 32CA reactions is associated with the global charge transfer found at the TS, which is in agreement with azwitterionic-type(zw-type)mechanism. According to our results, the present theoretical study suggests that the substitution is required in both, TACs and the ethylene species, in order to experimentally perform these zw-type 32CA reactions under mild conditions.
1. Domingo, L. R.; Sáez, J. A.Org.Biomol. Chem.,2009,b7, 3576-3583.
2. Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187-10198.
3. Domingo, L. R.; Saez, J. A. J. Org.Chem. 2011,76, 373-379.